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1 Introduction

Consider the ring of polynomials R = k[x1, . . . , xn] over some field k. Given polynomials f1, . . . , fs

the ideal generated by these polynomials is

I = (f1, . . . , fs) =
{
a1f1 + · · ·+ asfs : ai ∈ R

}
.

For example, take the ideal I = (f, g) generated by f = x2y and g = xy2 − z in k[x, y, z]. One can

ask whether or not xz belongs to I. After a bit of puzzling, we see that we can cancel the leading

terms of f and g to find that

xz = yf − xg.

Next, one can ask: does z2 belong to I? Again the answer is positive, as can be seen from

z2 = y3f − (xy2 + z)g,

but it is not clear how to find such an expression. What if we cannot find such a linear combination?

What if we have many indeterminates and many polynomials, and doing these computations by

hand is infeasible. How do we know for sure whether or not a polynomial belongs to I?

The Ideal Membership Problem: Given an ideal I = (f1, . . . , fs) ⊂ R and a poly-

nomial f ∈ R, does f ∈ I? And if so, find an expression of the form

f = a1f1 + · · ·+ asfs.

2 Monomial orders

The way we will solve this problem is by trying to reduce a polynomial f modulo the generators

f1, . . . , fs. This is easy to do for polynomials in one variable, using polynomial division: dividing f

by g means finding q and r such that

f = qg + r with deg(r) < deg(g).

However, for multivariate polynomials this is not so clear. For example, take f = xy and g = x+ y,

then

xy = y · (x+ y)− y2, xy = x · (x+ y)− x2, xy = 0 · (x+ y) + xy,

but in no case can we get the degree of the remainder below deg(x+y) = 1. Hence, we need another

way to compare polynomials, different from simply comparing their degrees.

Definition 1. A monomial in R is any term of the form Xα = xα1
1 · · ·xαn

n with αi ∈ N.
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Definition 2. A monomial order on R is a total order < on the set of monomials, such that

� X < Y =⇒ XZ < Y Z for any monomial Z,

� 1 < X for any monomial X 6= 1.

Example 3. The lexicographical order is the monomial order defined by

Xα < Xβ ⇐⇒

{
the first coordinates αi and βi which

are different satisfy αi < βi

In particular, for k[x, y] this gives 1 < y < y2 < y3 < · · · < x < xy < xy2 < · · · < x2 < · · ·

Example 4. The degree lexicographical order is the monomial order defined by

Xα < Xβ ⇐⇒

{
deg(Xα) < deg(Xβ),

with lex order as tiebreaker

In particular, for k[x, y] this gives 1 < y < x < y2 < xy < x2 < y3 < xy2 < x2y < x3 < · · ·

Example 5. The degree reverse lexicographical order is defined as

Xα < Xβ ⇐⇒

{
deg(Xα) < deg(Xβ), and as tiebreaker:

use reverse lex order, invert the result

In particular, for k[x, y, z] this gives z2 < yz < y2 < xz < xy < x2.

Definition 6. Fix a monomial order on k[x1, . . . , xn]. Given any non-zero polynomial f ∈ k[x1, . . . , xn],

write

f = c1X
α1 + · · · crXαr

with ci 6= 0 and such that Xα1 > · · · > Xαr . Then we define

� LM(f) = Xα1 , the leading monomial of f ,

� LC(f) = c1, the leading coefficient of f ,

� LT(f) = c1X
α1 , the leading term of f .

Example 7. Consider the degree lexicographical order. For f = 2y3 + x2 + 7 we find

LM(f) = y3, LC(f) = 2, LT(f) = 2y3.

By default, we will just use degree lexicographical order.

3 Polynomial reduction

Definition 8. Given polynomials f, g, h ∈ R with g 6= 0, we say that f reduces to h modulo g in

one step, written

f
g−→ h

if LM(g) divides a non-zero term X of f and h = f − X
LT(g)g. Note that this subtracts the term X

from f and replaces it by terms which are strictly smaller than X.
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Example 9.

xy
x+y−−−→ −y2 (subtracted y · (x+ y))

x2y + 7y3
y2+2x−−−−→ x2y − 14xy (subtracted y · (y2 + 2x))

Definition 10. Given polynomials f, h ∈ R and a set G = {g1, . . . , gs} ⊂ R of non-zero polynomials,

we say that f reduces to h modulo G, denoted

f
G−→ h,

if there exists a sequence of indices i1, . . . , it ∈ {1, . . . , s} and a sequence of polynomials h1, . . . , ht−1

such that

f
gi1−−→ h1

gi2−−→ h2
gi3−−→ · · ·

git−1−−−→ ht−1
git−−→ h.

Example 11. Let G = {g1, g2} with g1 = xy − y and g2 = y2 − x. Then xy2
F−→ x since

xy2
g1−→ y2

g2−→ x.

Definition 12. A polynomial f is called reduced w.r.t. G if it cannot be reduced modulo G. That

is, no term of f is divisible by any one of the LM(gi).

This allows multivariate division! Given a polynomial f , there are polynomials qi and r such that

f = q1g1 + · · ·+ qsgs + r

such that r is reduced w.r.t. G.

Now we cannot always expect such a decomposition to be unique, but we would like to have a unique

remainder. In particular, if f ∈ I = (f1, . . . , fs) we would like the remainder to be always zero.

The constant polynomial 1 cannot be reduced modulo F = {x2, x2 + 1}, but it definitely lives in the

ideal (x2, x2 + 1) = (1). Hence, these generators are probably not good generators in some sense.

4 Gröbner bases

Definition 13. A set of non-zero polynomials G = {g1, . . . , gs} is called a Gröber basis for the ideal

I = (g1, . . . , gs) if for all non-zero f ∈ I, we have that LM(gi) divides LM(f) for some gi ∈ G.

In other words, G is a Gröbner basis for I if there are no non-zero polynomials in I which are reduced

with respect to G. Note that it is not clear from the definition that such bases actually exist or are

unique.

Proposition 14. G is a Gröbner basis if and only if for all f ∈ R the remainder of reduction of f

by G is unique.

Proof. We only proof the ‘only if’ part. Let G be a Gröbner basis, and suppose f
G−→ r1 and f

G−→ r2,

with r1 and r2 reduced w.r.t. G. Since f − r1 and f − r2 are both in I, so is r1 − r2. But r1 − r2 is

reduced, so r1 − r2 = 0.
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5 Buchberger’s algorithm

Recall that G = {g1, . . . , gs} is a Gröbner basis for I = (g1, . . . , gs) if and only if for all f ∈ I, there

exists some gi ∈ G such that LM(gi) divides LM(f). So a difficulty arises with elements f ∈ I whose

leading monomial LM(f) is not divisible by any LM(gi). However, note that we can always write

f =

s∑
i=1

aigi,

so the problem occurs when the largest of the LM(aigi) = LM(ai) LM(gi) cancel. The simplest case

of such is the following.

Definition 15. Given non-zero f, g ∈ R, the S-polynomial of f and g is

S(f, g) =
L

LT(f)
f − L

LT(g)
g,

where L = lcm(LM(f),LM(g)).

Example 16. Let f = 2xy − y and g = y2 − x. Then L = lcm(xy, y2) = y2x and

S(f, g) = 1
2yf − xg = x2 − 1

2y
2.

The S-polynomial may also be viewed in another way. Namely, in the division of f by f1, . . . , fs, it

may happen that some term X appearing in f is divisible by both LM(fi) and LM(fj) for i 6= j,

and hence divisible by L = lcm(LM(fi),LM(fj)). If we reduce f using fi, we get the polynomial

h1 = f − X
LT(fi)

fi, and if we reduce using fj , we get h2 = f − X
LT(fj)

fj . The ambiguity lies in

h2 − h1 =
X

LT(fi)
fi −

X

LT(fj)
fj =

X

L
S(fi, fj).

Hence, for such ambiguities to disappear, we want these S-polynomials to be in our Gröbner basis!

Theorem 17 (Buchberger). A set of non-zero polynomials G = {g1, . . . , gs} is a Gröbner basis for

I = (g1, . . . , gs) if and only if for all i 6= j,

S(gi, gj)
G−→ 0.

Proof. Omitted, see [1, Theorem 1.7.4].

This theorem gives an algorithm to compute a Gröbner basis. One simply checks if all S-polynomials

reduce to zero, and if not, we add the remainder of that S-polynomial to the basis. This way, all

S-polynomials will reduce to zero by force.

Algorithm 18 (Buchberger’s Algorithm).

Input: a set F = {f1, . . . , fs} of non-zero polynomials.

Output: a Gröbner basis G for the ideal I = (f1, . . . , fs).
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(1) Start with G := F . Let A = {(fi, fj) : i < j} be the set of all pairs whose

S-polynomial needs to be checked.

(2) As long as A 6= ∅, take a pair (f, g) out of A, and compute the S-polynomial S(f, g).

(3) If the reduction S(f, g)
G−→ r is non-zero, then add r to G, and also add the pairs

(g, r) to A for all g ∈ G.

Remark 19. To see why this algorithm terminates, look at the initial ideal of the set G, which is

generated by the leading monomials of the elements of G,

in(G) = (LM(g) : g ∈ G).

This ideal strictly grows as more elements are added to G, but this process must stop because R is

noetherian.

Example 20. Let I be the ideal generated by f1 = xy − y and f2 = y2 − x. We want to use the

algorithm to compute a Gröbner basis for I = (f1, f2). As in an earlier example, we computed

S(f1, f2) = x2 − y2 f2−→ x2 − x =: f3.

Then we compute

S(f1, f3) = 0

and

S(f2, f3) = −x3 + xy2
f3−→ xy2 − x f1−→ y2 − x f2−→ 0.

So {f1, f2, f3} is a Gröbner basis for I.

6 Uniqueness of Gröbner bases

Definition 21. A Gröbner basis G = {g1, . . . , gs} is minimal if LC(gi) = 1 for all i, and LM(gi)

does not divide LM(gj) for i 6= j.

To obtain a minimal Gröbner basis from a Gröbner basis, simply make each gi monic, and remove

all gi whose LM(gi) are divisible by some other LM(gj).

Lemma 22. If G = {g1, . . . , gs} is a Gröbner basis for I, and LM(g2) divides LM(g1), then

{g2, . . . , gs} is a Gröbner basis for I as well.

Proof. Clearly, if for a polynomial f ∈ I the leading monomial LM(f) is divisible by LM(g1), then

it is divisible by LM(g2) as well, so we can omit g1.

Still, minimal Gröbner bases are not unique, but we are getting closer.

Proposition 23. If G = {g1, . . . , gs} and H = {h1, . . . , ht} are minimal Gröbner bases for I, then

s = t and after renumbering if necessary, LM(gi) = LM(hi).
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Proof. Since g1 is in I, and H is a Gröbner basis, LM(hi) divides LM(g1) for some i. After renum-

bering if necessary, we can assume i = 1. Now since G is a Gröbner basis, LM(gj) divides LM(h1)

for some j. Hence LM(gj)|LM(g1) and thus j = 1 as G is minimal, and hence LM(g1) = LM(h1).

Similarly for g2, some LM(hi) divides LM(g2), and we cannot have i = 1 since LM(h1) = LM(g1),

so we can assume i = 2. Then LM(gj) divides LM(h2), which must be j = 2, so LM(g2) = LM(h2).

Continue inductively.

Definition 24. A Gröbner basis G = {g1, . . . , gs} is called reduced if it is minimal, and moreover

each gi ∈ G is reduced w.r.t. G \ {gi}.

To construct a reduced Gröbner basis from a minimal Gröbner basis, simply replace each gi with its

reduction w.r.t. the other gj .

Theorem 25 (Buchberger). Fix a monomial order. Then every non-zero ideal I has a unique

reduced Gröbner basis.

Proof. If G and H are both reduced Gröbner bases, we have already seen that LM(gi) = LM(hi) for

all i, possibly after renumbering. If gi 6= hi for some i, then gi − hi ∈ I implies that LM(hj) divides

LM(gi − hi) for some j. We must have j 6= i as LM(gi − hi) < LM(hi). But then LM(hj) = LM(gj)

divides a term of gi or hi, which contradicts the fact that G and H are reduced. Hence gi = hi.

7 Applications

Ideal membership. Let I = (f1, . . . , fs) be an ideal in R, and suppose we want to determine

whether some f ∈ R is contained in I. This can be done by computing a Gröbner basis for I, and

checking if f
G−→ 0. By keeping track of which linear combinations of fi make up the gi, one can

recover an expression f = a1f1 + · · ·+ asfs whenever f ∈ I.

Ideal equality. One can check whether two ideals I, J ⊂ R are equal, by checking whether they

have the same reduced Gröbner basis.

Coset representatives. Given an ideal I ⊂ R, one can define canonical representatives for any

f ∈ R/I. To do so, let G be a Gröbner basis for I, and define the normal form of f ∈ R to be the

reduction NG(f) of f w.r.t. G. Then f ≡ g mod I if and only if NG(f) = NG(g) by Proposition

14.

Moreover, this gives a canonical basis for the k-vector space R/I. Namely, one can take{
monomials Xα not divisible by any LM(gi)

}
.

Computing inverses in quotient. Using the above basis for R/I, we can easily write down a

multiplication table w.r.t. the basis. Then computing inverses in R/I is simply a matter of linear

algebra. Note that this does require the k-basis to be finite!

Radical membership. Let I = (f1, . . . , fs) ⊂ R be an ideal, and suppose we want to deter-

mine whether f ∈
√
I. We claim it is equivalent to check whether 1 ∈ Ĩ for the ideal Ĩ =
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(f1, . . . , fs, 1 − wf) ⊂ k[x1, . . . , xn, w], which can be done using a Gröbner basis for Ĩ. Indeed,

by Hilbert’s nullstellensatz, we have that

f ∈
√
I ⇐⇒ f vanishes whenever f1, . . . , fs vanish

⇐⇒ f1 = . . . = fs = 1− wf = 0 has no solution (over an algebraic closure k)

⇐⇒ 1 ∈ (f1, . . . , fs, 1− wf) = Ĩ .

In particular, we can also determine whether two ideals I and J have the same radical. Namely,√
I =

√
J if and only if I ⊂

√
J and J ⊂

√
I. However, actually computing the radical is not so

easy.

Solvability of equations. Suppose k is algebraically closed. Then a system of equations f1, . . . , fs ∈
R has a solution if and only if I = (f1, . . . , fs) does not contain 1.

Furthermore, we have finitely many solutions if and only if the ideal is zero-dimensional if and only

if for each i there is an m ∈ N such that (xi)
m ∈ LM(G).

Computing kernels and images. Let φ : k[y1, . . . , ym]→ k[x1, . . . , xn] be a ring morphism. Such

a map is uniquely determined by the images fi = φ(yi). To compute the kernel kerφ, we use the

following theorem.

Theorem 26 ([1, Theorem 2.4.2]). Let K = (y1 − f1, . . . , ym − fm) ⊂ k[y1, . . . , ym, x1, . . . , xn].

Then kerφ = K ∩ k[y1, . . . , ym].

Now compute a Gröbner basis G for K with respect to a monomial order of k[y1, . . . , ym, x1, . . . , xn]

for which the xi are greater than the yi. Then the polynomials in G which are independent of the

xi form Gröbner basis for kerφ.

In order to determine whether some f ∈ k[x1, . . . , xn] lies in the image of φ, we use the following

theorem.

Theorem 27 ([1, Theorem 2.4.4]). Let K = (y1 − f1, . . . , ym − fm) ⊂ k[y1, . . . , ym, x1, . . . , xn] with

reduced Gröbner basis G, w.r.t. the above-mentioned monomial order. Then f ∈ k[x1, . . . , xn] lies

in the image of φ if and only if f
G−→ h for some h ∈ k[y1, . . . , ym]. Moreover, if this is the case,

f = φ(h).

8 Gröbner bases for modules

Consider the free R-module Rm with the natural basis e1, . . . , em.

Definition 28. A monomial in Rm is any term of the formXei, for some 1 ≤ i ≤ m and monomialX

in R. We say that Xei divides Y ej if i = j and X divides Y , in which case we write Xei/Y ej = X/Y .

Definition 29. A monomial order on Rm is a total order < on the monomials of Rm such that

� Xei < ZXei for all monomials Xei of Rm and monomials Z 6= 1 of R,
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� if Xei < Y ej , then ZXei < ZY ej for all monomials Z of R.

Example 30. Given a monomial order on R, there are two natural monomial orders on Rm. The

monomial order TOP (term over position) is given by

Xei < Y ej ⇐⇒

{
X < Y or

X = Y and i < j,

and the monomial order POT (position over term) is given by

Xei < Y ej ⇐⇒

{
i < j or

i = j and X < Y.

Now, given a monomial order on Rm, the theory previous sections carries over very naturally.

� One can define LM,LC and LT analogous to Definition 6.

� One can define notions of reduction f
g−→ h and f

F−→ h for f, g, h ∈ Rm and F ⊂ Rm, analogous

to Definition 8 and Definition 10.

� One can define the notion of a (minimal/reduced) Gröbner basis for submodules M ⊂ Rm.

� One can define the least common multiple of monomials of Rm as

lcm(Xei, Y ej) =

{
lcm(X,Y ) if i = j,

0 else.

� One can define the S-polynomial of two non-zero f, g ∈ Rm as

S(f, g) =
L

LT(f)
f − L

LT(g)
g with L = lcm(LM(f),LM(g)).

� One has an analogue of Buchberger’s algorithm for submodules M ⊂ Rm.

� Similarly, every non-zero submodule M ⊂ Rm has a unique reduced Gröbner basis.

9 Syzygy modules

Let φ : Rs → Rm be an R-module morphism. Note that the map φ is completely determined by the

images fi = φ(ei) ∈ Rm of the basis vectors for 1 ≤ i ≤ s.

Definition 31. A syzygy of φ is a vector (r1, . . . , rs) ∈ Rs such that

r1f1 + · · · rsfs = 0,

that is, an element of the kernel of φ. The submodule Syz(φ) = ker(φ) ⊂ Rs of all syzygies of φ is

called the syzygy module of φ.
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Now suppose that G = {f1, . . . , fs} is a Gröbner basis for the image of φ. Observe that the S-

polynomials S(fi, fj) yields syzygies of φ. Namely, as S(fi, fj)
G−→ 0, we can write

S(fi, fj) =
L

LT(fi)
fi −

L

LT(fj)
fj =

s∑
`=1

a`g` (with L = lcm(LM(fi),LM(fj)))

for some a` ∈ R. This gives the syzygy(
a1, a2, . . . , ai−1, ai −

L

LT(fi)
, ai+1, . . . , aj−1, aj +

L

LT(fj)
, aj+1, . . . , as

)
∈ Syz(φ).

In fact, we have ai = aj = 0 since LT(S(fi, fj)) must be smaller than both LT(fi) and LT(fj).

The following theorem states that the syzygies of φ obtained this way generate all of syzygies of φ.

Theorem 32 (Schreyer’s Theorem [2, Theorem 15.10]). Suppose that G = {f1, . . . , fs} forms a

Gröbner basis for the image of φ, then{
L

LT(fi)
ei −

L

LT(fj)
ej : 1 ≤ i < j ≤ s

}
(with L = lcm(LM(fi),LM(fj)))

generates the syzygy module Syz(φ). Moreover, this set forms a Gröbner basis of Syz(φ) with respect

to the monomial order on Rs given by

Xei < Y ej ⇐⇒

{
LM(Xfi) < LM(Y fj) or

LM(Xfi) = LM(Y fj) and i < j.

Remark 33. Note that Schreyer’s theorem directly gives an algorithm to compute a free resolutions

for a given finitely generated R-module M .

· · · → R⊕mi
ϕi−→ R⊕mi−1

ϕi−1−−−→ · · · ϕ2−→ R⊕m1
ϕ1−→ R⊕m0

ϕ0−→M → 0

Indeed, let ϕ0 : R⊕m0 →M be a surjection such that the ϕ0(ei) form a Gröbner basis for M . Then

a generating set for ker(ϕ0) is given by Schreyer’s theorem. Applying Buchberger’s algorithm gives

a Gröbner basis for ker(ϕ0), which determines ϕ1 : R⊕m1 → R⊕m0 . This process can be continued

inductively, and by Hilbert’s syzygy theorem, this process must terminate.

Remark 34. The algorithm presented in the above remark to construct free resolutions of R-

modules M is good, but not super efficient. For a more efficient approach, look into Schreyer

resolutions.
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