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1 Introduction

Consider the ring of polynomials R = k[x1,...,x,] over some field k. Given polynomials fi,..., fs

the ideal generated by these polynomials is
I = (fla---vfs) = {a1f1+"'+asfs:ai ER}

For example, take the ideal I = (f,g) generated by f = 2%y and g = xy? — z in k[z,y,2]. One can
ask whether or not xz belongs to I. After a bit of puzzling, we see that we can cancel the leading
terms of f and ¢ to find that

xz=yf —xg.

Next, one can ask: does z2 belong to I? Again the answer is positive, as can be seen from
2=y’ f = (zy® + 2)g,

but it is not clear how to find such an expression. What if we cannot find such a linear combination?
What if we have many indeterminates and many polynomials, and doing these computations by

hand is infeasible. How do we know for sure whether or not a polynomial belongs to I7

The Ideal Membership Problem: Given an ideal I = (f1,...,fs) C R and a poly-
nomial f € R, does f € I? And if so, find an expression of the form

f=aifi+- - +asfs.

2 Monomial orders

The way we will solve this problem is by trying to reduce a polynomial f modulo the generators
f1,-.., fs. This is easy to do for polynomials in one variable, using polynomial division: dividing f

by g means finding ¢ and r such that
f=q9+r with deg(r) < deg(g).

However, for multivariate polynomials this is not so clear. For example, take f = zy and g = = + v,
then

cy=y-(x+y) -y’ ay=z-(z+y)-2°,  2y=0-(z+y) +ay
but in no case can we get the degree of the remainder below deg(x+y) = 1. Hence, we need another
way to compare polynomials, different from simply comparing their degrees.

aq

Definition 1. A monomial in R is any term of the form X< = 27" .- 2%~ with a; € N.



Definition 2. A monomial order on R is a total order < on the set of monomials, such that

m X <Y = XZ <YZ for any monomial Z,

m 1 < X for any monomial X # 1.
Example 3. The lexicographical order is the monomial order defined by

xo < X8 the ﬁ'rst coordin'ates a; and (; which

are different satisfy o; < 3;
In particular, for k[z,y] this gives 1 <y <y? <y’ < <ax<ay<my®<---<2?<.-
Example 4. The degree lexicographical order is the monomial order defined by

B
xo < x5 dég(X“) < deg(X.),
with lex order as tiebreaker
In particular, for k[z,y] this gives l <y <z <y’ <ay<z?’ <y <y’ <z?y<ad <.
Example 5. The degree reverse lexicographical order is defined as

deg(X®) < deg(X?), and as tiebreaker:

X< XP — i
use reverse lex order, invert the result

In particular, for k[x,y, 2] this gives 22 < yz < y? < 1z < zy < 2%

Definition 6. Fix a monomial order on k[z1, . .., z,]. Given any non-zero polynomial f € k[zq, ...

write

f = Cl)(oé1 + .- CTX(XT
with ¢; # 0 and such that X** > ... > X% . Then we define

m LM(f) = X, the leading monomial of f,
m LC(f) = ¢, the leading coefficient of f,
m LT(f) = 1 X, the leading term of f.

Example 7. Consider the degree lexicographical order. For f = 2y3 + 22 + 7 we find

By default, we will just use degree lexicographical order.

3 Polynomial reduction

7xn]a

Definition 8. Given polynomials f,g,h € R with g # 0, we say that f reduces to h modulo g in

one step, written
f3h

if LM(g) divides a non-zero term X of f and h = f — %@g. Note that this subtracts the term X

from f and replaces it by terms which are strictly smaller than X.



Example 9.
xy EALN —y? (subtracted y - (z + y))

2
a2y + Ty? YAz, z?y — 14y (subtracted y - (y? + 2x))

Definition 10. Given polynomials f,h € R and aset G = {g1,...,9s} C R of non-zero polynomials,
we say that f reduces to h modulo G, denoted

G
f — h7
if there exists a sequence of indices iy, ...,4; € {1,..., s} and a sequence of polynomials h1,...,hi_1
such that
9iy Giqy Gig iy _q Giy

f—hi —hy— -+ —— hy_1 — h.

Example 11. Let G = {g1, g2} with g; = 2y — y and g2 = y*> — 2. Then xy? & since

zy? 2 By g

Definition 12. A polynomial f is called reduced w.r.t. G if it cannot be reduced modulo G. That

is, no term of f is divisible by any one of the LM(g;).

This allows multivariate division! Given a polynomial f, there are polynomials ¢; and r such that

f=ag+ - +qgs+r
such that r is reduced w.r.t. G.

Now we cannot always expect such a decomposition to be unique, but we would like to have a unique

remainder. In particular, if f € I = (f1,..., fs) we would like the remainder to be always zero.

The constant polynomial 1 cannot be reduced modulo F' = {z?, 2% + 1}, but it definitely lives in the

ideal (22,22 4+ 1) = (1). Hence, these generators are probably not good generators in some sense.

4 Grobner bases

Definition 13. A set of non-zero polynomials G = {g1,...,gs} is called a Grober basis for the ideal
I={(g1,...,9s) if for all non-zero f € I, we have that LM(g;) divides LM(f) for some g¢; € G.

In other words, G is a Grébner basis for I if there are no non-zero polynomials in I which are reduced
with respect to G. Note that it is not clear from the definition that such bases actually exist or are

unique.

Proposition 14. G is a Gréobner basis if and only if for all f € R the remainder of reduction of f
by G is unique.

Proof. We only proof the ‘only if” part. Let G be a Grobner basis, and suppose f <, r1 and f N T2,
with r; and ro reduced w.r.t. G. Since f —ry and f —r9 are both in I, so is ry — ro. But r; — ry is

reduced, so ry — 19 = 0. O



5 Buchberger’s algorithm

Recall that G = {g1,...,9s} is a Grobner basis for I = (g1,...,9s) if and only if for all f € I, there
exists some g; € G such that LM(g;) divides LM(f). So a difficulty arises with elements f € I whose

leading monomial LM(f) is not divisible by any LM(g;). However, note that we can always write

s
f = Z a;gi,
i=1

so the problem occurs when the largest of the LM(a;g;) = LM(a;) LM(g;) cancel. The simplest case
of such is the following.

Definition 15. Given non-zero f,g € R, the S-polynomial of f and g is

L L

where L = lem(LM(f),LM(g)).

Example 16. Let f =22y —y and g = y? — x. Then L = lem(zy, y?) = 3%z and
S(f,9) = suf —xg =a® — Jy*.

The S-polynomial may also be viewed in another way. Namely, in the division of f by f1,..., fs, it
may happen that some term X appearing in f is divisible by both LM(f;) and LM(f;) for ¢ # j,
and hence divisible by L = lem(LM(f;), LM(f;)). If we reduce f using f;, we get the polynomial
hy=f— %f“ and if we reduce using f;, we get ho = f — %f])fj The ambiguity lies in

X X
LT(f;)""  LT(f;)

Hence, for such ambiguities to disappear, we want these S-polynomials to be in our Grébner basis!

hy — hy =

X
fi= fs(fi,fj)'

Theorem 17 (Buchberger). A set of non-zero polynomials G = {g1,...,9s} is a Grobner basis for
I=1(g91,.--,9s) if and only if for all i # j,

G
S(9i95) = 0.
Proof. Omitted, see [1, Theorem 1.7.4]. O

This theorem gives an algorithm to compute a Grébner basis. One simply checks if all S-polynomials
reduce to zero, and if not, we add the remainder of that S-polynomial to the basis. This way, all

S-polynomials will reduce to zero by force.

Algorithm 18 (Buchberger’s Algorithm).

Input: aset F'={fi,..., fs} of non-zero polynomials.
Output: a Grobner basis G for the ideal I = (f1,..., fs).



(1) Start with G := F. Let A = {(fi,f;) : © < j} be the set of all pairs whose
S-polynomial needs to be checked.

(2) Aslong as A # @, take a pair (f, g) out of A, and compute the S-polynomial S(f,g).

(3) If the reduction S(f,g) G r s non-zero, then add r to G, and also add the pairs
(g,7) to A for all g € G.

Remark 19. To see why this algorithm terminates, look at the initial ideal of the set G, which is

generated by the leading monomials of the elements of G,
in(G) = (LM(g) : g € G).

This ideal strictly grows as more elements are added to G, but this process must stop because R is

noetherian.

Example 20. Let I be the ideal generated by f; = zy —y and fo = 3> — 2. We want to use the

algorithm to compute a Grobner basis for I = (fi, f2). As in an earlier example, we computed
f:
S(fi, f2) =a? =y B a? —x = fs.

Then we compute

S(fi,f3)=0

and

S(fg,fg):—w3+xy2f—3>xy2—xf—1>y2—xf—2>0.

So {f1, f2, f3} is a Grobuer basis for 1.

6 Uniqueness of Grobner bases

Definition 21. A Grobner basis G = {g¢1,...,9s} is minimal if LC(g;) = 1 for all 4, and LM(g;)
does not divide LM(g,) for ¢ # j.

To obtain a minimal Grobner basis from a Grobner basis, simply make each g; monic, and remove
all g; whose LM(g;) are divisible by some other LM(g;).
Lemma 22. If G = {g1,...,9s} is a Grobner basis for I, and LM(g2) divides LM(g1), then

{92,--.,9s} is a Grobner basis for I as well.

Proof. Clearly, if for a polynomial f € I the leading monomial LM(f) is divisible by LM(g1), then
it is divisible by LM(g2) as well, so we can omit g;. O
Still, minimal Grébner bases are not unique, but we are getting closer.

Proposition 23. If G = {g1,...,9s} and H = {hq,..., ht} are minimal Grébner bases for I, then
s =t and after renumbering if necessary, LM(g;) = LM(h;).



Proof. Since gy is in I, and H is a Grobner basis, LM(h;) divides LM(g;) for some i. After renum-
bering if necessary, we can assume ¢ = 1. Now since G is a Grobner basis, LM(g;) divides LM(h;)
for some j. Hence LM(g;)| LM(g1) and thus j = 1 as G is minimal, and hence LM(g1) = LM(h1).
Similarly for go, some LM(h;) divides LM(g2), and we cannot have ¢ = 1 since LM(hy) = LM(g1),

so we can assume ¢ = 2. Then LM(g;) divides LM(hs), which must be j = 2, so LM(g2) = LM(hs)
Continue inductively. O
Definition 24. A Grobner basis G = {g1,...,gs} is called reduced if it is minimal, and moreover

each g; € G is reduced w.r.t. G\ {g:}.

To construct a reduced Grobner basis from a minimal Grobner basis, simply replace each g; with its

reduction w.r.t. the other g;.

Theorem 25 (Buchberger). Fiz a monomial order. Then every non-zero ideal I has a unique

reduced Grobner basis.

Proof. If G and H are both reduced Grébner bases, we have already seen that LM(g;) = LM(h;) for
all 4, possibly after renumbering. If g; # h; for some 4, then g; — h; € I implies that LM(h;) divides
LM(g; — h;) for some j. We must have j # ¢ as LM(g; — h;) < LM(h;). But then LM(h;) = LM(g;)
divides a term of g; or h;, which contradicts the fact that G and H are reduced. Hence g; = h;. [

7 Applications

Ideal membership. Let I = (f1,...,fs) be an ideal in R, and suppose we want to determine
whether some f € R is contained in /. This can be done by computing a Grébner basis for I, and
checking if f =N By keeping track of which linear combinations of f; make up the g;, one can

recover an expression f =ajf1 + -+ asfs whenever f € I.

Ideal equality. One can check whether two ideals I, J C R are equal, by checking whether they

have the same reduced Grobner basis.

Coset representatives. Given an ideal I C R, one can define canonical representatives for any
f € R/I. To do so, let G be a Grobner basis for I, and define the normal form of f € R to be the
reduction Ng(f) of f wrt. G. Then f =g mod I if and only if Ng(f) = Ng(g) by Proposition
14.

Moreover, this gives a canonical basis for the k-vector space R/I. Namely, one can take
{monomials X* not divisible by any LM(g;)}.
Computing inverses in quotient. Using the above basis for R/I, we can easily write down a

multiplication table w.r.t. the basis. Then computing inverses in R/I is simply a matter of linear

algebra. Note that this does require the k-basis to be finite!

Radical membership. Let I = (f1,...,fs) C R be an ideal, and suppose we want to deter-
mine whether f € vI. We claim it is equivalent to check whether 1 € I for the ideal I =



(fi,-- s fs,1 —wf) C k[z1,...,2,,w], which can be done using a Grobner basis for I. Indeed,
by Hilbert’s nullstellensatz, we have that

f eI < f vanishes whenever fi,..., f; vanish
<= fi=...=fs=1—wf =0 has no solution (over an algebraic closure k)

— le(flaafévl_wf):j

In particular, we can also determine whether two ideals I and J have the same radical. Namely,
VI = +/J if and only if I ¢ v/ J and J C V/I. However, actually computing the radical is not so

easy.

Solvability of equations. Suppose k is algebraically closed. Then a system of equations f1, ..., fs €
R has a solution if and only if I = (f1,..., fs) does not contain 1.

Furthermore, we have finitely many solutions if and only if the ideal is zero-dimensional if and only
if for each 4 there is an m € N such that (z;)™ € LM(G).

Computing kernels and images. Let ¢ : k[yy, ..., ym] = k[21,...,z,] be a ring morphism. Such
a map is uniquely determined by the images f; = ¢(y;). To compute the kernel ker ¢, we use the

following theorem.

Theorem 26 ([1, Theorem 2.4.2]). Let K = (y1 — f1,--sYm — fm) C kY1, Ym,T1s- -, Tn).
Then ker ¢ = K Nkly1, ..., Ym]-

Now compute a Grébner basis G for K with respect to a monomial order of k[y1, ..., Ym, Z1, . .-, ZTn)
for which the x; are greater than the y;. Then the polynomials in G which are independent of the

x; form Grobner basis for ker ¢.

In order to determine whether some f € k[z1,...,z,] lies in the image of ¢, we use the following

theorem.

Theorem 27 ([1, Theorem 2.4.4]). Let K = (y1 — f1,-- -, Ym — fm) Ck[Y1, -+ s Ym, T1, - ., Tp] with
reduced Grébner basis G, w.r.t. the above-mentioned monomial order. Then f € k[z1,...,z,] lies

in the image of ¢ if and only if f Ny for some h € kly1,...,ym]. Moreover, if this is the case,

f=ao(h).

8 Grobner bases for modules

Consider the free R-module R™ with the natural basis ey, ..., en,.

Definition 28. A monomial in R™ is any term of the form Xe;, for some 1 < ¢ < m and monomial X
in R. We say that Xe; divides Ye; if i = j and X divides Y, in which case we write Xe;/Ye; = X/Y.

Definition 29. A monomial order on R™ is a total order < on the monomials of R™ such that

m Xe; < ZXe; for all monomials Xe; of R™ and monomials Z # 1 of R,



m if Xe; < Yej, then ZXe; < ZYe; for all monomials Z of R.

Example 30. Given a monomial order on R, there are two natural monomial orders on R™. The

monomial order TOP (term over position) is given by

X <Yor

Xe; <Ye; < o
X =Y and i < j,

and the monomial order POT (position over term) is given by

t<jor

Xe; <Ye; — o
i=jand X <Y.

Now, given a monomial order on R™, the theory previous sections carries over very naturally.

m One can define LM, LC and LT analogous to Definition 6.

m One can define notions of reduction f % h and f s hfor f,9,h € R™ and F' C R™, analogous
to Definition 8 and Definition 10.

m One can define the notion of a (minimal/reduced) Grébner basis for submodules M C R™.
m One can define the least common multiple of monomials of R™ as

lem(X,Y) ifi=j,

lem(Xe;,Ye;) = { 0 olse

m One can define the S-polynomial of two non-zero f,g € R™ as

L L

S !

with L = lem(LM(f),LM(g)).

m One has an analogue of Buchberger’s algorithm for submodules M C R™.

m Similarly, every non-zero submodule M C R™ has a unique reduced Grébner basis.

9 Syzygy modules

Let ¢ : R® — R™ be an R-module morphism. Note that the map ¢ is completely determined by the
images f; = ¢(e;) € R™ of the basis vectors for 1 <14 < s.

Definition 31. A syzygy of ¢ is a vector (rq,...,7s) € R® such that
rifi+-rsfs =0,

that is, an element of the kernel of ¢. The submodule Syz(¢) = ker(¢) C R* of all syzygies of ¢ is
called the syzygy module of ¢.



Now suppose that G = {f1,..., fs} is a Grobner basis for the image of ¢. Observe that the S-
polynomials S(f;, f;) yields syzygies of ¢. Namely, as S(f;, f;) N 0, we can write

L
LT(f:)

S(fi, [5) = fi—

L . .
TR(f) fi= ;am (with L = lem(LM(f;), LM(f;)))

for some ay € R. This gives the syzygy

L

L
i1y, 1,0 F ———, 1,...,as> € Syz(¢).
LT(fl') + ] 7 7+ ()

LT(f)
In fact, we have a; = a; = 0 since LT(S(f;, f;)) must be smaller than both LT(f;) and LT(f;).

(alaaza-' <y Ai—1, 05 —

The following theorem states that the syzygies of ¢ obtained this way generate all of syzygies of ¢.

Theorem 32 (Schreyer’s Theorem [2, Theorem 15.10]). Suppose that G = {f1,..., fs} forms a
Grébner basis for the image of ¢, then

L L
e; — e<:1§i<j§s} with L = lem(LM(f;), LM(f;
generates the syzygy module Syz(¢). Moreover, this set forms a Grobner basis of Syz(¢) with respect

to the monomial order on R® given by

LM(X f;) < LM(Y f;) or

Xe; <Ye; <= o
LM(X f;) =LM(Y f;) and i < j.

Remark 33. Note that Schreyer’s theorem directly gives an algorithm to compute a free resolutions

for a given finitely generated R-module M.

ey RO FL ROy Pl P2y pomy P, pdme 20, hp oy
Indeed, let ¢q : R®™° — M be a surjection such that the ¢g(e;) form a Grébner basis for M. Then
a generating set for ker(pg) is given by Schreyer’s theorem. Applying Buchberger’s algorithm gives
a Grobner basis for ker(yg), which determines ¢; : R®™t — R®™0_ This process can be continued

inductively, and by Hilbert’s syzygy theorem, this process must terminate.

Remark 34. The algorithm presented in the above remark to construct free resolutions of R-
modules M is good, but not super efficient. For a more efficient approach, look into Schreyer

resolutions.
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